Computational study of ethanol adsorption and reaction over rutile TiO2 (110) surfaces.
نویسندگان
چکیده
Studies of the modes of adsorption and the associated changes in electronic structures of renewable organic compounds are needed in order to understand the fundamentals behind surface reactions of catalysts for future energies. Using planewave density functional theory (DFT) calculations, the adsorption of ethanol on perfect and O-defected TiO(2) rutile (110) surfaces was examined. On both surfaces the dissociative adsorption mode on five-fold coordinated Ti cations (Ti(4+)(5c)) was found to be more favourable than the molecular adsorption mode. On the stoichiometric surface E(ads) was found to be equal to 0.85 eV for the ethoxide mode and equal to 0.76 eV for the molecular mode. These energies slightly increased when adsorption occurred on the Ti(4+)(5c) closest to the O-defected site. However, both considerably increased when adsorption occurred at the removed bridging surface O; interacting with Ti(3+) cations. In this case the dissociative adsorption becomes strongly favoured (E(ads) = 1.28 eV for molecular adsorption and 2.27 eV for dissociative adsorption). Geometry and electronic structures of adsorbed ethanol were analysed in detail on the stoichiometric surface. Ethanol does not undergo major changes in its structure upon adsorption with its C-O bond rotating nearly freely on the surface. Bonding to surface Ti atoms is a σ type transfer from the O2p of the ethanol-ethoxide species. Both ethanol and ethoxide present potential hole traps on O lone pairs. Charge density and work function analyses also suggest charge transfer from the adsorbate to the surface, in which the dissociative adsorptions show a larger charge transfer than the molecular adsorption mode.
منابع مشابه
Adsorption configurations and energetics of BClx (x=0-3) on TiO2 anatase (101) and rutile (110) surfaces.
This study investigates the adsorption and reactions of boron trichloride and its fragments (BClx) on the TiO2 anatase (101) and rutile (110) surfaces by first-principles calculations. The results show that the possible absorbates on the TiO2 anatase and rutile surfaces are very similar. The single- and double-site adsorption configurations are found for both anatase and rutile surfaces. The pa...
متن کاملA density functional tight binding study of acetic acid adsorption on crystalline and amorphous surfaces of titania.
We present a comparative density functional tight binding study of an organic molecule attachment to TiO2 via a carboxylic group, with the example of acetic acid. For the first time, binding to low-energy surfaces of crystalline anatase (101), rutile (110) and (B)-TiO2 (001), as well as to the surface of amorphous (a-) TiO2 is compared with the same computational setup. On all surfaces, bidenta...
متن کاملComputational Study of Structure and Reactivity of Oligomeric Vanadia Clusters Supported on Anatase and Rutile TiO2 Surfaces
We use density functional theory to examine structure− activity relationships of small vanadia clusters supported on anatase TiO2(001) and rutile TiO2(110) surfaces. A thermodynamic analysis indicates that the vanadia monomer cluster can be stabilized on the anatase TiO2(001) surface in a catalytically relevant oxygen environment. On the other hand, vanadia clusters tend to aggregate into dimer...
متن کاملInfrared spectroscopy study of adsorption and photodecomposition of formic acid on reduced and defective rutile TiO2 (110) surfaces
متن کامل
The adsorption and reaction of a titanate coupling reagent on the surfaces of different nanoparticles in supercritical CO2.
The adsorption and reaction in supercritical CO2 of the titanate coupling reagent NDZ-201 on the surfaces of seven metal oxide particles, SiO2, Al2O3, ZrO2, TiO2 (anatase), TiO2 (rutile), Fe2O3, and Fe3O4, was investigated. FTIR and TG analysis indicated that the adsorption and reaction were different on different particle surfaces. On SiO2 and Al2O3 particles, there was a chemical reaction of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 34 شماره
صفحات -
تاریخ انتشار 2012